Peripheral Nerve Segment Defect Repair

Thomas L. Smith, PhD
Dept. Orthopaedic Surgery
Wake Forest School of Medicine
Disclosures

• I own stock in Orthovative, LLC a startup orthopaedic device company

 – This company has nothing to do with nerve repairs or nerve repair technology
Peripheral Nerve Injury: The Problem

• 2-3% of trauma patients suffer a major nerve injury
 – 31,000,000 ED traumas/yr

• 100,000 digital amputations per year in the US
 – ~30% are suitable for replantation

• Nerve injury and aging
 – 50% of patients over 50 will not achieve any functional recovery after nerve repair
Nervous Control of Skeletal Muscle

Motor Control

Sensory Input

Merck Manual
Peripheral nerve injury

Common Injuries to Motor Nerves
- Brachial plexus injuries
- Carpal tunnel syndrome
- Ulnar nerve entrapment
- Thoracic Outlet syndrome
- Laceration, contusion
- Stretch & Traction
- Thermal
Peripheral nerve injury

- Complete transection
- Crush
- Ischemia
Challenges of nerve injury

• Problems:
 – Size of nerve – Vascular supply
 • 1 mm
 – Distance to target organ
 – Selectivity of re-innervating nerve fibers
 – Time to re-innervation of target – specifically muscle
 – Size of nerve gap

• State of Research
Peripheral nerve injury

What happens with Nerve Injury?
Peripheral nerve injury

Motor Control – Peripheral Nerve transmission

Nodal conduction (saltatory)

120-200 meters/sec

Nodes of Ranvier – 1 micron wide
- separate Schwann cells
- 1871: Louis-Antoine Ranvier (1835-1922)
 “noeuds de Ranvier”
Peripheral nerve injury

Schwann Cells (Specialized glial cells)

- up to 500 per neuronal axon

- Provide insulation by the envelopment of the nerve with lipid-rich myelin sheath.

- Potentiate conduction
Peripheral nerve injury

Neurovascular system
Response of Peripheral Nerve to Injury

DISTAL SEGMENT:

- Rapid disintegration occurs - Wallerian degeneration
- Myelin disintegrates and is phagocytised by Schwann cells & macrophages
- Empty axon tubules rapidly cleared in anticipation of regenerating axons

Molnar, 2004
Lundborg
Response of Peripheral Nerve to injury

PROXIMAL NERVE SEGMENT:

- Axons degenerate for a distance of one or several internodal segments
- A single nerve fibre will sprout into a regenerating unit containing many nerve fibres
- Axon regenerate rate average: 1.0-1.5mm/day
- Axons that make connection with peripheral targets mature and myelinate, the rest disappear
Peripheral nerve injury

Axonal recovery and re-growth

Lundborg
Peripheral nerve injury repair

Nerve injury repairs

Paul of Aegina – 625-690: importance of approximation of nerve ends

Hueter – 1871: primary epineural nerve repairs

Loebke – 1884: bone shortening to reduce tension
Peripheral nerve injury

Nerve growth following injury
– rate of 1 mm/day

Gordon et al. JPNS 2003
Peripheral nerve injury

• Several types of nerve repairs - microsurgical
 – Primary (end-to-end)

• “Tension Free”
 - Grafts
 - External fixator
Management of Peripheral Nerve Defects: External Fixator Assisted Primary Neurorrhaphy

Ruch et al. Bone and Joint Surg (Am), 2004; 86-A(7)
4 patients with tibial or sciatic nerve defects

Articulated external fixators were slowly extended

Good motor and sensory outcomes
Conclusions

• Outcomes superior to traditional repair techniques
• No joint contractures
• Useful for injuries near the joint
Peripheral nerve injury

• Several types of nerve repairs
 – Cable (interfascicular nerve graft) = autograft
 • Permits adequate perfusion of nerve
 – Morbidity at donor site
• “Tension Free”
• Gold Standard
Autograft

• Autograft: most common donor nerves
 – Sural nerve: 40cm each side
 – Lateral Antebrachial Cutaneous Nerve,
 – Medial Antebrachial Cutaneous Nerve,
 – Posterior Interosseous Nerve

• Morbidity
Current State of Research

- Autografts – less than 3 cm
- Allografts – 70 mm (7 cm) – width of dollar bill
- Nerve guides – less than 3 cm
 - Matrix – cellular attachment
 - Filaments/haptic structures
 - Matrix + trophic factors
 - Mechanism of release - nanoparticles, microspheres
- Electrical
Peripheral nerve injury

• Several types of nerve repairs

Nerve allograft
 - Commercially available
 - 7 cm nerve gap
 - “Tension Free”
Peripheral nerve injury

• Several types of nerve repairs

Nerve conduit
 - Commercially available
 - “Tension Free”
Nerve guide for nerve repair

Non-human Primates - pictured

Mice

Rats**

Rabbits

Keratin – other fillers

Trophic factors

Other - channels, nanotech
Nerve guides/growth factors

Polycaprolactone nerve Guide
 Double-Walled GDNF Microspheres: Marra (Pitt)

Silk nerve guide: Kaplan (Tufts)

Polycaprolactone nerve guide
 PLGA – VEGF microspheres: Wang, Windebank (Mayo)

Collagen nerve guide: VanDyke (WFU)
 Keratin
Hydrogel use in nerve guides

Hydrogel use strategy in peripheral nerve regeneration.

Lin Y-C, Marra K – Biomed Matl. 7 - 2012
Addition of factors to Guide

Incorporation of fillers, cells or growth factors within a nerve guide.

Lin Y-C, Marra K – Biomed Matl. 7 - 2012
Clinically and Experimentally Implemented Design Criteria for Nerve Guidance Conduits

<table>
<thead>
<tr>
<th>Materials</th>
<th>Clinical (C) or experimental (E)</th>
<th>Design criteria</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopolymers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen</td>
<td>C (NeuraGen)</td>
<td>Bio, Deg, Phys</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Bio, Deg, Anis, Phys</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Bio, Deg, Pro, Phys</td>
<td>106</td>
</tr>
<tr>
<td>Fibrin</td>
<td>E</td>
<td>Bio, Deg, Pro, Phys</td>
<td>38</td>
</tr>
<tr>
<td>Fibrin (matrix)</td>
<td>E</td>
<td>Bio, Deg, Phys, Supp</td>
<td>107</td>
</tr>
<tr>
<td>Gelatin</td>
<td>E</td>
<td>Bio, Deg, Phys</td>
<td>39</td>
</tr>
<tr>
<td>Keratin</td>
<td>E</td>
<td>Bio, Deg, Phys</td>
<td>40, 41, 90</td>
</tr>
<tr>
<td>Silk</td>
<td>E</td>
<td>Bio, Deg, Phys, Supp</td>
<td>87</td>
</tr>
</tbody>
</table>

Bio, biocompatibility; Deg, degradation/porosity; Anis, anisotropy; Pro, protein modification/release, Phys, physical fit; Supp, support cells

Nectow et al. 2012, Tiss. Eng. 18(1)
Clinically and Experimentally Implemented Design Criteria for Nerve Guidance Conduits

<table>
<thead>
<tr>
<th>Materials</th>
<th>Clinical (C) or experimental (E)</th>
<th>Design criteria</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic polymers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCL</td>
<td>C (Neurolac)</td>
<td>Bio, Deg, Phys</td>
<td>15</td>
</tr>
<tr>
<td>PGA</td>
<td>C (Neurotube)</td>
<td>Bio, Deg, Phys</td>
<td>20,34</td>
</tr>
<tr>
<td>Poly (hydroxybutyrate)</td>
<td>E</td>
<td>Bio, Deg, Pro, Phys</td>
<td>46</td>
</tr>
<tr>
<td>Poly (D,L-lactide)</td>
<td>E</td>
<td>Bio, Deg, Anis, Phys</td>
<td>47</td>
</tr>
<tr>
<td>PLGA</td>
<td>E</td>
<td>Bio, Deg, Phys</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Bio, Deg, Phys, Supp</td>
<td>63</td>
</tr>
</tbody>
</table>

Bio, biocompatibility; Deg, degradation/porosity; Anis, anisotropy; Pro, protein modification/release; Phys, physical fit; Supp, support cells; Elec, electrically conducting.

Nectow et al. 2012, Tiss. Eng. 18(1)
Growth Factors Utilized for Peripheral Nerve Repair

<table>
<thead>
<tr>
<th>Growth Factor(s)</th>
<th>Delivery Methods</th>
<th>Repair Site</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td>Nanofibers & Conduits</td>
<td>Rat Sciatic Nerve</td>
<td>Mature Nerve Fibers, ↑ Functional Recovery, ↑ Nerve conduction velocities, Prevention of connective tissue ingrowth</td>
</tr>
<tr>
<td>GDNF</td>
<td>Microspheres</td>
<td>Rat Sciatic Nerve</td>
<td>↑ Gastrocnemius twitch force, ↑ Improved Tissue Integration, Nerve Fibers across entire area of regeneration</td>
</tr>
<tr>
<td>GDNF or BDNF</td>
<td>Transfection into Neural Stem Cells (NSC)</td>
<td>Rat Sciatic Nerve</td>
<td>↑ Myelination from GDNF NSC & BDNF NSC, ↑ Size of Regenerated Tissue from GDNF NSC & BDNF NSC, ↑ Blood Vessels from GDNF NSC, ↑ Functional Gait from GDNF NSC & BDNF NSC</td>
</tr>
<tr>
<td>NGF & GDNF</td>
<td>Collagen tube impregnation</td>
<td>Rat Sciatic Nerve</td>
<td>↑ Early (2-week) regeneration</td>
</tr>
<tr>
<td>BMP-2</td>
<td>Injection</td>
<td>Rabbit Facial Nerve</td>
<td>Denser axons, Thicker axons, ↑ Tau Protein</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Injection</td>
<td>Rat Sciatic Nerve</td>
<td>↑ Functional Recovery, Faster sensory recovery, ↑ G-ratios</td>
</tr>
</tbody>
</table>

M.C. Tupaj – Tufts Dissertation -2012
Additional nerve guide modifications

• Physical guides for axon growth
 – Fibers
 – Channels

• Electrical potentials
 – Internal
 – Exogenous

• Combinations
 – Nanowires
Outcomes of Nerve Repair

• **Functional** outcomes – motor

 – Gait
 – Muscle force generation
 – Compound motor action potential
 – Dexterity - pinch
Peripheral nerve injury

Factors affecting recovery = Challenges

- Length of delay before repair
 - 6-12 months
 - Changes in the target organ

- Age
 - Compromised in aging population

- Health (e.g. Diabetes)
Peripheral nerve injury
Peripheral nerve injury

Factors affecting recovery = Challenges

- Size of nerve gap

- Co-morbidities
 - multi-trauma

Others?
Focus areas for the Future

• Improve functionality
• Tissue engineering/regenerative medicine
• Halt target organ changes – increase temporal window for re-innervation
• Increase gap repair capabilities
• Improve outcomes for patients over 25
People who work on this

• Lauren Pace
• Mark Van Dyke
• Peter Apel
• Johannes Plate
• Zhongyu Li
• L Andrew Koman

Supported by
• AFIRM
• ASSH
• Errett Fisher Fdn
• CDMRP
Thank you
Nerve Regeneration Through a Keratose-Filled Conduit: A Study in Rabbits

- Primary Site: WFIRM
- Preliminary studies underway
 - Techniques
 - Methodology
- Pilot study – To begin in January
 - To determine ‘critical gap’

Full study
- 3 groups
 - Sural nerve autograft
 - Empty
 - Keratose
- n=10 for each group
Nerve Regeneration Through a Keratose-Filled Conduit: A Study in Rabbits

- **Outcome measures**
 - Electrophysiology of neuromuscular unit
 - Muscle force generation

- **Rate of reinnervation**
 - Serial NMJ histology
 - Thick sections (40µm)
 - Light microscopy
 - Silver stain
 - Acetylcholinesterase stain

- **Nerve histomorphometry**

- **Muscle phenotype changes**
Peripheral nerve injury

Following nerve injury

• Gap-43 – soma as well as distal nerve trunk (axons only, not in dendrites)

• Nerve Growth factors

• CAP 23